
COMP++
An object-oriented successor to MACOS...

January 20, 1998

Dave Redding, Meemong Lee

Jet Propulsion Laboratory, California Institute of Technology

Objectives for future MACOS development

• Upgrades (beyond mere fixes)...
– Expand library of elements
– Expand physics scope
– Efficient memory management
– Simplify S-MACOS and MACOS/Matlab interfaces

• Improved...
– Ease of use, whether as a stand-alone app or embedded

Matlab toolbox
– Ease of programming

» Internal, by developers
» External, by users

– External access to data
» All MACOS data in Matlab workspace
» Other databases

• Open architecture
– Distributed development

Object-oriented architecture

• We have been experimenting with a new object-oriented
MACOS

– Complete rewrite in C++

• “Object-oriented” means
– Software objects have “same” properties as physical

objects, for a more intuitive interface
– New objects can inherit properties and functions from other

similar objects, for more efficient programming
– Data hiding and other techniques make it easier to write

modular, expandable code
– Easier for others to write MACOS/COMP++ code

• “Complete rewrite” means
– Recoding everything in a new structure and a new language
– Revalidating everything

Is it worth it???

Properties of optical systems

• Elements
– Type: reflective; refractive; diffractive; reference; return
– Segmentation: Segmented mirror; lenslet array;
– Sequence (must be searched for cornercubes, prisms, …)
– Index of refraction; extinction coefficient; …
– Surfaces

» Location, direction
• Perturbed by structure, controls

» Apertures; obscurations
» Shape

• Conicoid; spherical; flat; general aspheres; anamorphic; …
• Deformed or shaped using polynomials, influence functions,

gridded data, XYZ data, …
– By design

– By structures, controls

•

•

Properties of optical systems (cont.)

• Sources
– Location, direction, angular extent
– Spectrum (wavelength/flux)
– Phase/amplitude (beam profile)
– Polarization

• Beams
– Ray grid

» Location, direction properties for each ray
» Number of rays, gridding of rays

– Diffraction grid
» Mapping to ray grid for geometric properties
» Amplitude and phase across full beam

• Detectors
– Location, direction, angular extent
– Segmentation/pixelation
– QE, crosstalk, noise properties

Properties of optical systems (cont.)

• Subsystems
– Super-elements

» Lenses, prisms, corner cubes, …
– Multiple systems in combination

» Interferometers, spectrometers, …

• More later…

COMP++ Current Configuration

Optical System
Description

Parser

Prescription
(“.in-file”)

Object Classes

Analysis

2-D Graphics
Library

MACOS-UI

COMP++

User

Matlab User Apps

COMP++ Object Class Configuration

The Light…

Source
 Ray
 Medium

Beam
 Ray chief
 Ray[] rays

Wavefront
 Amplitude

The Optics…

Element
 Surface[]
 Medium
 …

Element
 Surface[]
 Medium
 …

Element
 Surface[]
 Medium
 …

Element
 Surface[]
 Medium
 …

System

Element Class Definition and Derived Classes

Element
 location
 orientation
 name
 element_type
 prop_type
 Medium
 Surface
 Aperture

 trace_ray()
 trace_all()
 propagate()
 partials()
 modify()
 perturb()
 deform()
 …

reflector
refractor
grating
HOE
reference
return
detector
…

Surface
 location
 orientation
 pivot
 surface_type
 Obstruction[]

 trace_ray()
 partials()
 modify()
 perturb()
 deform()
 …

Surface Class Definition and Derived Classes

flat
conic
anamorphic
gen_aspheric
monomial
zernike
 zern_type
deformable
grid_data
xyz_data
user_defined
…

COMP++ Analysis Configuration

Beam_setup
 optimize_ref_srf
 slave_ref_srf
 center_beam
 set_stop
 find_field_pt
 find_pupil
 perturb
 …

Ray_trace
 trace
 spot_diag
 OPD_map
 find_cross_pt
 …

Propagation
 propagate
 intensity
 read_filter_file
 multispectral_prop
 …

Image_simulation
 compose
 pixilated_image
 noise
 cross_talk
 add_image
 display_composed_image
 stretch
 …

MACOS vs. COMP++: the user perspective

• Ease of use: stand-alone
– COMP++ better suited to GUI implementation
– Needed?

• Ease of use: calling from Matlab or user apps
– COMP++ structures simplify passing of data to and from

user application/Matlab workspace, but...
– Same can be done for S-MACOS

• Ease of use: programming
– COMP++ provides simpler, safer means for adding new

capability
– C++ vs. Fortran

• Performance
– COMP++ has efficient memory management

MACOS vs. COMP++: the developer perspective

• Ease of use: programming
– COMP++ provides simpler, safer means for adding new

capabilities

• Cost
– COMP++ requires much work before it equals MACOS

capabilities

Object-oriented IMOS

• An object-oriented architecture for IMOS as a whole

